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Abstract

We review two recently developed efficient methods for calculating rate constants of processes dominated by rare

events in high-dimensional complex systems. The first is transition interface sampling (TIS), based on the measurement

of effective fluxes through hypersurfaces in phase space. TIS improves efficiency with respect to standard transition path

sampling (TPS) rate constant techniques, because it allows a variable path length and is less sensitive to recrossings. The

second method is the partial path version of TIS. Developed for diffusive processes, it exploits the loss of long time

correlation. We discuss the relation between the new techniques and the standard reactive flux methods in detail. Path

sampling algorithms can suffer from ergodicity problems, and we introduce several new techniques to alleviate these

problems, notably path swapping, stochastic configurational bias Monte Carlo shooting moves and order-parameter

free path sampling. In addition, we give algorithms to calculate other interesting properties from path ensembles besides

rate constants, such as activation energies and reaction mechanisms.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Molecular simulation has become indispensable as a modern tool to gain insight in the kinetics of

processes in complex environment by supplying detailed atomistic information that is not (easily) experi-

mentally accessible. Using either classical or ab initio based atomistic force fields [1,2], techniques such

as molecular dynamics (MD) [3,4] can model reactive events on a reasonable realistic level. In contrast
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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to most experiments where kinetic properties such as the reaction rate are obtained by measuring the mac-

roscopic population densities of reactant and product states over a long time (seconds), molecular dynamics

simulations have to obtain good statistics with much smaller systems (usually �100 to 100,000 molecules) in

the accessible time range of nanoseconds–microseconds using a time step of a few femtoseconds, as dictated

by the molecular vibrations. This small timescale and system size limits the application to activated pro-
cesses with relatively low barriers between reactant and product states. The computation of rate constants

with straightforward MD becomes inefficient when the process of interest has to overcome a high activation

barrier because the probability to observe a reactive event on this time- and system-scale decreases expo-

nentially with the barrier height. The system will spend a long time in one of the stable states and occasion-

ally jump – in relatively short time – to the other state. This separation of time scales results in two state

kinetics: the exponential relaxation of the population densities [5].

The time-scale problem is traditionally solved by a two-step reactive flux method [6–9]. One first

calculates the free energy as a function of a reaction coordinate describing the process. The transi-
tion state theory (TST) rate constant is then related to the probability to be at the maximum of the

free energy barrier. This rate is only an approximation and the second part of the reactive flux

methods computes the correction, the transmission coefficient, by starting many fleeting trajectories

from the top of the barrier [6–9]. However, the success of this method depends strongly on the

choice of reaction coordinate. If the reaction coordinate fails to capture the molecular mechanism

the corresponding transmission coefficient will be extremely low, making an accurate evaluation of

the rate problematic if not impossible. For high-dimensional complex systems, for instance chemical

reactions in solution, or protein folding, a good reaction coordinate can be extremely difficult to
find and usually requires detailed a priori knowledge of the transition mechanism. Hence, TST based

reactive flux methods will be ineffective for complex processes for which no prior knowledge is

available.

Chandler and collaborators [10–14] devised a method for which no reaction coordinate is needed, but

only a definition of the reactant and product states. This method, called transition path sampling (TPS),

gathers a collection of trajectories connecting the reactant to the product stable region by employing a

Monte Carlo (MC) procedure called shooting and shifting. The resulting path ensemble gives an unbiased

insight in the mechanism of the reaction. TPS has been successfully applied to such diverse systems as clus-
ter isomerization, auto-dissociation of water, ion pair dissociation and on isomerization of a dipeptide, as

well a reactions in aqueous solution (see [13] for an overview). A drawback of TPS is that the calculation of

rate constants is rather computer time consuming. We therefore developed the more efficient transition

interface sampling (TIS) method [15]. TIS allows a variable path length, thereby limiting the required

MD time steps to the strict necessary minimum. The TIS rate equation is based on an effective positive flux

formalism and is less sensitive to recrossings. The shifting moves used in TPS to enhance statistics are

unnecessary in the TIS algorithm. Also, multidimensional or even discrete order parameters can easily

be implemented in TIS. Recently, we showed that for diffusive processes one can exploit the loss of corre-
lation along trajectories. This lead to the development of the partial path TIS (PPTIS) method, a variation

of TIS that samples much shorter paths [16].

In this paper, we re-derive the basic concepts of TIS and PPTIS in a more intuitive way and relate them

to the calculation of the transmission coefficient. For the mathematical validation of the expressions we

refer to [15,16]. The paper is organized as follows. In Section 2, we discuss the relation between several dif-

ferent microscopic expressions for the phenomenological rate constant present in the literature, and derive

the positive effective flux formalism on which both interface path sampling methods are based. In Section 3,

we present the TIS and PPTIS formalism and the precise algorithm. In Section 4, we introduce new algo-
rithms for alleviating ergodicity problems that might occur in path sampling simulations. Section 5 is re-

served for new ways of extracting interesting properties from path ensembles, such as the activation

energy of a reaction. We end with concluding remarks.
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2. Microscopic rate equations

The calculation of reaction rate constants by computer simulation requires an expression for the

rate constant in terms of microscopic properties. Such a microscopic rate expression needs a proper

characterization of the reactant state A and product state B for each separate reaction, but should
not be too sensitive to these state definitions. Otherwise, an unrealistic ill-defined rate will result.

Once we have a rate expression, there are several ways to compute the reaction rate. The standard

reactive flux method measures the flux through a single hypersurface in phase-space dividing the

reactant state A from the product state B. In TPS, the rate constant is taken from a time derivative

of a correlation function, which can be calculated by slowly confining a completely free path ensem-

ble to an ensemble that connects reactant to product. The TIS approach measures a reactive flux

through many interfaces between A and B. These three methods can be related to each other, as

they ultimately compute the same properties. The TPS correlation function at t = 0 becomes equiv-
alent to the TST approach when A and B are adjacent in phase space [14]. The TIS effective po-

sitive flux formalism for a single interface is equivalent to TST-based transmission coefficient

calculations [15]. The TIS rate equation can also be recast in terms of a TPS-like correlation func-

tion, but then based on the so-called overall states of the system. In the following subsections, we

will explain the reactive flux, TPS, and TIS methods and their connections in detail.
2.1. Transition state theory

The first step in TST is to choose a reaction coordinate k describing the transition from a stable

reactant state A to a stable product state B. This reaction coordinate can be any function k(x) of phase
space point x ” {r,p}, with r the particle coordinates and p the momenta. Next, the free energy

F(k) = �kBTln(P(k)) is calculated by determining the probability P(k) to be at k using, for instance,

biased sampling techniques [17–19]. Here, kB is the Boltzmann constant and T is the temperature.

The maximum k* in F(k) defines the dividing surface {x|k(x) = k*} separating state A from state B.

By convention, the system is in A if k(x) < k* and in B if k(x) > k*. For a phase point x in A, the

probability to be at the top of the barrier is:
P ðk�Þx2A �
dðkðxÞ � k�Þh i
h k� � kðxÞð Þh i ¼

e�bF ðk
�ÞR k�

�1 dke�bF ðkÞ
; ð1Þ
where the brackets Æ� � �æ denote the equilibrium ensemble averages, h(x) and d(x) are the Heaviside step-
function and the Dirac delta function, respectively, and b = (kBT)

�1. TST assumes that trajectories that

cross k* do not recross the dividing surface. Hence, the TST expression is equivalent to the positive flux

through the dividing surface k*:
kTSTAB ¼ _kðxÞh _kðxÞ
� �D E

k�
Pðk�Þx2A; ð2Þ
where the dot denotes a time derivative and the subscript k* to the ensemble brackets indicates that
the ensemble is constrained to the top of the barrier on the dividing surface k*. The TST rate con-

stant is sensitive to the choice of reaction coordinate k(x) and will only be correct if the surface

{x|k(x) = k*} corresponds to the true transition state dividing surface: the so-called separatrix at

which no correlated recrossings occur. For complex systems, it is impossible to know the location

and shape of this curved multidimensional separatrix and it is even questionable if such surface

always exists. It is possible, however, to correct the TST expression with a dynamical factor that

is called the transmission coefficient.
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2.2. Transmission coefficients

Traditionally, the dynamically corrected rate constant is derived by applying a small perturbation to the

equilibrium state and invoking the fluctuation-dissipation theorem [20,5,4]. This leads, for instance, to the

well-known Bennett–Chandler (BC) [8,9] expression for the reaction rate
1 T

the ca

compe
kBCAB ðtÞ ¼
_kðx0Þd kðx0Þ � k�ð Þh kðxtÞ � k�ð Þ

D E
h k� � kðx0Þð Þh i ; ð3Þ
where xt specifies the coordinates and momenta of the system at time t as obtained from a short molecular

dynamics (MD) trajectory starting at x0. The ensemble average is taken over all phase points x0. For expo-

nentially relaxing two state kinetics with a well defined rate constant, there is a separation of timescales: the

reaction time srxn (or expectation time for one single event) is much longer than the molecular time smol that

the system spends on the barrier. In that case, Eq. (3) will reach a plateau value for smol < t� srxn, which is

equal to the correct phenomenological rate constant kAB. The function kBCAB ðtÞ will sensitively depend on the

choice of the reaction coordinate k, but the plateau value will not. In the limit t! 0+, the BC rate reduces
to the TST expression Eq. (2).

The transmission coefficient is defined as the ratio between the real rate constant and the TST expression:

j � kAB=k
TST
AB :
jBCðtÞ ¼
_kðx0Þh kðxtÞ � k�ð Þ

D E
k�

_kðx0Þh _kðx0Þ
� �D E

k�

: ð4Þ
The numerator in Eq. (4) counts trajectories with a positive, but also with a negative weight. The latter tra-

jectories leave the surface at t = 0 with a negative velocity _kðx0Þ, but are eventually found at the B side of the

surface after a (few) recrossing(s). However, untrue B! B trajectories do not contribute to the rate because

the positive and negative terms cancel 1 (see Fig. 1). Similarly, the A! B trajectories with multiple k*
crossings are effectively counted only once [15]. Although Eq. (3) gives the correct rate constant, it is rather

unsatisfactory to sample only trajectories forward in time not knowing which contribute to the rate and

which do not. Therefore, alternative expressions for the rate constant have been proposed taking the past
into account. Here, they are referred to as the BC2 [8,9] expression
jBC2ðtÞ ¼
_kðx0Þh k� � kðx�tÞð Þh kðxtÞ � k�ð Þ

D E
k�

_kðx0Þh _kðx0Þ
� �D E

k�

; ð5Þ
and the positive flux PF [21] expression
jpfðtÞ ¼
_kðx0Þh _kðx0Þ

� �
h kðxtÞ � k�ð Þ

D E
k�

_kðx0Þh _kðx0Þ
� �D E

k�

�
_kðx0Þh _kðx0Þ

� �
h kðx�tÞ � k�ð Þ

D E
k�

_kðx0Þh _kðx0Þ
� �D E

k�

: ð6Þ
In Eq. (5) the theta-functions guarantee that only true A! B events are counted. Still, the numerator in

Eq. (5) contains negative terms: those phase points x0 with a negative velocity _kðx0Þ and with corresponding

backward and forward trajectories that end up in A and B, respectively. Eq. (6) counts only positive cross-
his cancellation might seem to be not apparent if a trajectory recrosses the same surface, but with a different velocity. Still, this is

se. The absolute value of the flux of a trajectory is at each intersecting surface the same. A lower crossing velocity _k is

nsated by a higher probability to measure the crossing point as the trajectory spends more time at the surface.
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Fig. 1. Illustration of the difference in counting in the transmission coefficient Eqs. (4), (5), and (16). For simplicity, assume that the

system consists of three kind of possible trajectories, as shown by this figure, that cross the dividing surface with the same speed v

orthogonal to the surface. Each crossing point will contribute in Eqs. (4), (5), and (16) as a possible x0. To the seven phase points on the

surface (from top to bottom) the numerator of Eq. (4) with t > smol will assign the values [�v,v,v,�v,v,0,0], while these are

[0,0,v,�v,v,0,0] for Eq. (5) and [0,0,v,0,0,0,0] for Eq. (16). The sum of these give the same result v. Evaluation of Eq. (16) in an actual

computer algorithm requires the fewest MD steps as only phase points similar to the 3rd and 7th phase points would need the

integration until reaching stable state regions. For instance, the fifth crossing point can be assigned zero as soon as one detects that its

backward trajectory recrosses the surface.
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ings, but cancellation with a negative term can occur when the backward trajectory also ends up at the B

side of the dividing surface. At first sight, Eq. (6) seems to overcount A! B trajectories with multiple k*
crossings. However, if one realizes that each A! B trajectory has an equivalent trajectory B! A by
reversing the time, an overall cancellation of positive and negative terms ensures a proper final outcome.

For completeness, we mention that there are also similar expressions by Berne [22,23] and a relation by

Hummer [24] that counts both positive and negative crossings with a positive weight, but only if the cor-

responding trajectory ends at opposite sides of the surface and with a weight lower than j _kj if its trajectory
has more than just one crossing. Ruiz-Montero et al. [25] designed a transition zone method in which they

measure the flux on many places at the top of the barrier and weigh them with inverse free energy.

2.3. The effective positive flux formalism

A more intuitive, yet sound, alternative to the above expressions is the effective flux formalism. We can

illustrate this formalism with an analogy to the migration of people from country A to B. To determine the

emigration rate we can simply count the number of persons that cross the border from A to B within a cer-

tain time interval. However, we should not count tourists. This group consist of people who have a nation-

ality A and will only spend a short time in B, or have a nationality B and are actually on their way back.

Moreover, we have to be aware that some emigrants might cross the frontier several times on their way. To

prevent overcounting, we should only count one specified crossing for each person, for instance, the first or
the last crossing of the emigration journeys from A to B. The same reasoning can be applied when calcu-

lating the rate constant of a reaction. In a molecular simulation we can check the �nationality� of the system
and the one-crossing condition by simply following the equations of motions backward and forward in

time. This procedure, to count only true events and to avoid counting recrossings is what we call the effec-

tive positive flux formalism. In Section 2.5, we give the mathematical expression of the effective positive flux.

It is surprising that the effective positive flux counting strategy is not so common. To our knowledge only

two slightly different expressions of a transmission coefficient based on the effective positive flux have been
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proposed in [26,27]. In all other expressions found in the literature the counting of recrossings is not

avoided, but the final rate constant follows through cancellation of many negative and positive terms.

The effective flux transmission coefficients formulation is most useful when applying a single dividing sur-

face and when recrossings are apparent [23]. In general, we note that any averaging method counting only

zero and positive values will show a faster convergence than one that is based on cancellation of positive en
negative terms. Moreover, in the effective flux formalism many trajectories will be assigned as unreactive

after just a few MD steps (see Fig. 1), thus reducing the number of required force evaluations. A compar-

ative study of ion channel diffusion [23] showed that the algorithm based on effective positive flux expres-

sion of Anderson [26] was superior to the other transmission rate expressions. Moreover, it was found as

efficient as an optimized version of the more complicated Ruiz-Montero method [25].

2.4. The population correlation function used in TPS

In TPS one also has to define an order parameter k(x), but this does not have to be a properly chosen

reaction coordinate capturing the essence of the dynamical mechanism. Instead, it is sufficient but necessary

that this function is able to characterize the basins of attraction of the stable states [13]. By definition the

system is in A if k(x) < kA and in B if k(x) > kB with kA < kB. Clearly, the two states are not connected and

the intermediate barrier region belongs neither to A nor to B. By introducing following characteristic

functions:
hAðxÞ ¼ 1 if x 2 A; else hAðxÞ ¼ 0;

hBðxÞ ¼ 1 if x 2 B; else hBðxÞ ¼ 0:
ð7Þ
TPS employs a correlation function defined as
CðtÞ � hAðx0ÞhBðxtÞh i
hAðx0Þh i : ð8Þ
If there is a separation of timescales, this population correlation function grows linearly in time,C(t) � kAB t,
for times smol < t� srxn. In that case, the time dependent reaction rate,
kTPSAB ðtÞ ¼
d

dt
CðtÞ; ð9Þ
reaches a plateau for smol < t� srxn. C(t) can be calculated in a path sampling simulation employing the
shooting and shifting Monte Carlo moves, in combination with an umbrella sampling algorithm in which

the final region B is slowly shrunk from the entire phase space to the final stable state B [14]. The disad-

vantage of such a procedure is that it can take a relatively long time smol before C(t) reaches a plateau. This

time is, in general, longer than in a transmission coefficient calculation due to trajectories that are not

released from top of the barrier, but may start, in principle, anywhere in stable state A [14].

All paths in the path sampling should have a minimal length T > smol and as a result unnecessarily long

periods are spent inside the stable state basins of attraction. Moreover, inspection of Eqs. (8) and (9) shows

that a necessary cancellation of positive and negative terms can slow down the convergence of the MC sam-
pling procedure. In the case of adjacent A and B regions, the TPS formalism becomes equivalent to the TST

approximation in the limit t! 0 [14].

2.5. The road to TIS

The TIS method is based on the measurement of the fluxes though multiple dividing surfaces. Consider a

set of n + 1 non-intersecting multidimensional interfaces {0,1. . .n} described by an order parameter k(x)
that does not have to correspond to the real reaction coordinate. We choose ki, i = 0. . .n such that
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ki � 1 < ki, and that the boundaries of state A and B are described by k0 and kn, respectively. For each phase

point x and each interface i, we define a backward time tbi ðxÞ and forward time tfi ðxÞ:

tbi ðx0Þ � �max½ftjkðxtÞ ¼ ki ^ t 6 0g�;
tfi ðx0Þ � þmin½ftjkðxtÞ ¼ ki ^ t P 0g�;

ð10Þ
which mark the points of first crossing with interface i on a backward (forward) trajectory starting in x0.

Note that tbi and tfi defined in this way always have positive values. Following [15], we then introduce two-

fold characteristic functions that depend on two interfaces i 6¼ j,
�h
b

i;jðxÞ ¼
1 if tbi ðxÞ < tbj ðxÞ;
0 otherwise;

�
�h
f

i;jðxÞ ¼
1 if tfi ðxÞ < tfjðxÞ;
0 otherwise;

�
ð11Þ
which measure whether the backward (forward) time evolution of x will reach interface i before j or not.

However, as the interfaces do not intersect, the time evolution has to be evaluated only for those phase
points x that are in between the two interfaces i and j. In case i < j, we know in advance that

tb;fi ðxÞ < tb;fj ðxÞ if k(x) < ki and tb;fi ðxÞ > tb;fj ðxÞ if k(x) > kj. When the system is ergodic, both interfaces i

and j will be crossed in finite time and thus �h
b

i;jðxÞ þ �h
b

j;iðxÞ ¼ �h
f

i;jðxÞ þ �h
f

j;iðxÞ ¼ 1. The two backward char-

acteristic functions define the TIS overall states A and B:
hAðxÞ ¼ �h
b

0;nðxÞ; hBðxÞ ¼ �h
b

n;0ðxÞ: ð12Þ
Together, the overall states cover the entire phase space and, within certain limits, do not sensitively depend

on the precise boundaries of stable states A and B. With these new characteristic functions we can write

down a correlation function similar to Eq. (8):
CðtÞ ¼ hAðx0ÞhBðxtÞh i
hAðx0Þh i : ð13Þ
This correlation function exhibits a linear regime �kABt for 0 < t < srxn [15]. Therefore, we can simply take
the time derivative at t = 0 yielding
kAB ¼
�h
b

0;nðx0Þ _kðx0Þdðkðx0Þ � knÞ
D E

hAðx0Þh i : ð14Þ
One can easily verify that here only positive terms contribute to the rate. The connection to the transmis-

sion coefficient can be made by using following relation [15]:
�h
b

i;k
_kdðkðxÞ � kkÞ

D E
¼ �h

b

i;j
_kdðkðxÞ � kjÞ�h

f

k;i

D E
ð15Þ
for ki < kj < kk. Using this equality, we can write down a transmission coefficient similar to the ones in

Section 2.2, but then based on the effective positive flux [27]:
jTIS ¼
�h
b

0;iðx0Þ _kðx0Þh _kðx0Þ
� �

�h
f

n;0ðx0Þ
D E

ki

_kðx0Þh _kðx0Þ
� �D E

ki

ð16Þ
for ki = k*. Although, in principle, hð _kðx0ÞÞ is redundant in the numerator of Eq. (16) as
�h
b

0;iðx0Þ ¼ 0 if _kðx0Þ < 0, it is there to highlight that only positive crossings are counted. Trajectories started

at x0 on interface i are followed backward in time until they reach stable region A or recross interface i.

Then, only the ones that reach stable region A are also followed forward in time until they reach one of
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the stable regions. The slightly different effective flux expression of [26] follows trajectories until reaching

the plateau region time and counts for each A! B trajectory only the last crossing instead of the first.
3. (Partial path) transition interface sampling

3.1. Formalism

In a system for which the correct reaction coordinate k is known in advance and that is not dominated by
recrossings, the effective positive flux formalism of Eq. (16) and [26] is probably the best choice when using

a single dividing surface [23]. However, for complex systems, for instance chemical reactions in solution,

any intuitively chosen reaction coordinate can give arbitrary small transmission coefficients, making an

accurate computation prohibitive. To improve reaction coordinates by e.g. taking solvent degrees into

account is generally a difficult job. Some progress has been made by using the coordination number as reac-

tion coordinate [28,29], but this ad hoc approach probably only works for specific systems. For instance, we

showed that a proton transfer reaction in water depends very sensitively on the angular orientation of the

surrounding water molecules [30]. Similarly, the degrees of freedom in a protein are so large that dynamical
folding processes are at best only very qualitatively described by order parameters. Quantities such as ra-

dius of gyration or number of native contacts do usually not correspond to reaction coordinates [31]. Subtle

effects, e.g. the solvent structure, play also here a role. To incorporate all these subtleties in a single

one-dimensional reaction coordinate is an immense task and can only be successful if the precise reaction

mechanism is already known in advance. The TPS and TIS techniques do not rely on a reaction coordinate.

The TIS hypersurfaces do not have to coincide with the transition state dividing surface.

At the end of this section we give TIS (and PPTIS) rate expressions that can be employed in a computer

algorithm. First, as the derivation of the TIS and PPTIS formalism requires a proper notation, we intro-
duce following flux function:
/ijðxÞ � �h
b

j;iðxÞj _kðxÞjdðkðxÞ � kiÞ ¼ �h
b

j;iðxÞ limDt!0

1

Dt
h Dt � tfi ðxÞ
� �

: ð17Þ
The first equality has the same flux notation as Eq. (14), but the second equality is more useful in practice.

An MD trajectory might cross interface ki, but consists of discrete time slices that are never exactly on the

surface (as opposed to a transmission coefficient calculation). However, /ij(x) can still be defined for the

discrete MD set of time-slices by taking Dt equal to the molecular time-step. In words, /ij(x) equals 1/Dt
if the forward trajectory crosses ki in one single Dt time-step and the backward trajectory crosses kj before
ki. Otherwise /ij(x) vanishes. In addition, we introduce a flux function that incorporates also the forward

trajectory
Ulm
ij ðxÞ � /ijðxÞ�h

f

l;mðxÞ: ð18Þ
By making use of Eq. (15), we can write for ki < kj < kk:
h/kiðxÞi ¼ Uki
jiðxÞ

D E
ð19Þ
and, thus, the rate constant (14) becomes
kAB ¼ h/n;0i=hhAi ¼ Un;0
i;0

D E
=hhAi ð20Þ
for each ki with 0 6 i 6 n.

The second step is to define a conditional crossing probability that depends on the location of four

interfaces:



λm
λ j λ i λ l

Fig. 2. The conditional crossing probability P ðlmj
i
jÞ for a certain configuration of interfaces ki, kj, kl, and km. The condition ðjijÞ is

depicted by the arrow and the solid line for two phase points (the dots): from this phase point one should cross ki in one single Dt time-

step in the forward direction, and, besides, its backward trajectory should cross kj before ki. Two possible forward trajectories are given

by the dashed line. The upper crosses km before kl, the lower crosses kl as first. The fraction whose forward trajectories behave like the

last case equals P ðlmj
i
jÞ.
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P ðlmj
i
jÞ � Ulm

ij

D E
=h/iji: ð21Þ
In words, this is the probability for the system to reach interface l before m under the condition that it

crosses at t = 0 interface i, while coming directly from interface j in the past (see Fig. 2). The probabilities
in Eq. (21) are the building blocks for both TIS and PPTIS to construct expressions for the rate constant.

The probabilities P ðlmj
i
jÞ are defined on any set of four interfaces. The case, where m = j = 0 and m = j = n, is

of special interest for TIS and will be annotated as follows:
PAðkjjkiÞ � P ðj0j
i
0Þ; PBðkjjkiÞ � Pðjnj

i
nÞ: ð22Þ
For PPTIS, two types of crossing probabilities are required: the one interface crossing probabilities
p�i � P ðiþ1i�1j
i
i�1Þ; p	i � P ði�1iþ1j

i
iþ1Þ; p¼i � P ði�1iþ1j

i
i�1Þ; pzi � P ðiþ1i�1j

i
iþ1Þ; ð23Þ
and the long distance crossing probabilities
Pþi � P ði0j
1
0Þ; P�i � P ð0i j

i�1
i Þ: ð24Þ
Using these probabilities, the TIS rate constant can be written in terms that can be determined in a com-

puter simulation [15]
kAB ¼
/1;0

� �
hAh i PAðknjk1Þ; PAðknjk1Þ ¼

Yn�1

i¼1
PAðkiþ1jkiÞ: ð25Þ
The first factor
h/1;0i
hhAi is a flux and can be calculated by straightforward MD as k1 will be close to A (see Sec-

tion 3.2). The second factor, the crossing probability PAðknjk1Þ, is calculated using the factorization in

Eq. (25) into probabilities PAðkiþ1jkiÞ that are much higher than the overall crossing probability. These
can be calculated using the shooting algorithm as will be explained in Section 3.3.

For PPTIS the set of equations are as follows [16]:
kAB ¼
/1;0

� �
hAh i P

þ
n ; kBA ¼

/n�1;n
� �

hBh i
P�n ; ð26Þ

Pþj 

p�j�1P

þ
j�1

p� þ p¼ P�
; P�j 


p	j�1P
�
j�1

p� þ p¼ P�
: ð27Þ
j�1 j�1 j�1 j�1 j�1 j�1
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The factor
h/1;0i
hhAi is identical to the TIS flux factor, whereas to obtain the reverse rate kBA only a single extra

factor
h/n�1;ni
hhBi is needed. The Pþn and P�n are obtained via the recursive relations (26) once all single crossing

probabilities of Eq. (23) are known. Starting with Pþ1 ¼ P�1 ¼ 1, we can iteratively determine ðPþj ; P�j Þ for
j = 2, . . . until j = n. The one-hopping probabilities (23) can again be calculated using the shooting

algorithm. The PPTIS formalism basically transforms the process of interest into a Markovian sequence

of hopping events. Yet, if the dynamics is diffusive and the interfaces are sufficiently far apart, the rate for-

malism (27) and (26) will be a very good approximation [16].

3.2. The flux algorithm

The flux factor
h/1;0i
hhAi is the effective flux through k1 of the trajectories coming from k0 (from A). This fac-

tor is most conveniently computed with the first two interfaces identical. Although,
h/1;0i
hhAi is not well defined

for k1 = k0, we can set k1 = k0 + � and take the limit �! 0. In this way, the effective positive flux will be

equal to the simple positive flux through k1 (trajectories cannot recross without re-entering A, hence, all

crossings are counted.). Similarly, for the reverse rate kBA we can set kn � 1 = kn � �. If k1 is chosen close

enough to A the flux factor can be obtained by straightforward MD initialized in A and counting the

positive crossings through k1 = k0 during the simulation run:
/1;0

� �
hAh i ¼

1

Dt
Nþc
NMD

; ð28Þ
with Dt the MD time step, NMD the number of MD steps, and Nþc the number of counted positive crossings.

To calculate the rate at constant temperature instead of constant energy, one can apply a Nosé–Hoover
[32–35] or Andersen [36] thermostat. However, one should be aware that these thermostats do give the cor-

rect canonical distribution at a given temperature, but modify the dynamics in an unphysical way. Hence,

static averages ÆA(x)æ will be correct, but time correlation functions ÆA(x0)B(xt)æ most likely not. As

Nþc � hhðk1 � kðx0ÞÞhðkðxDtÞ � k1Þi is actually a correlation function over a very short time, this effect will

be small. However, if necessary one can easily correct for this by explicitly counting only phase points x that

in absence of the thermostat will cross k1 in one Dt time-step. Applying this correction is computationally

cheap as it does not require any additional force calculations. In Appendix A, we describe some possibilities

for further optimization of the flux algorithm.
3.3. The path sampling algorithm

To calculate the conditional probabilities in TIS and PPTIS we use a path sampling algorithm [14]. How-

ever, there are some differences with the classic TPS algorithm. Most importantly, in (PP)TIS the path

length is variable, which has a small implication for the acceptance criterion for the shooting move. In

Appendix B, we derive this acceptance rule for arbitrary (stochastic or deterministic) dynamics. The main

tools in the MC sampling of trajectory space are the shooting move and the time-reversal move [14]. In
particular for PPTIS, time-reversal moves can be quite effective. Shifting moves that enhanced statistics

in TPS are not needed and even useless in (PP)TIS.

TIS algorithm. The quantity of interest in TIS is the crossing probability PAðkiþ1jkiÞ (or PBðki�1jkiÞ for the
reverse rate constant kBA). To calculate this probability by sampling in the ki interface ensemble one needs

an initial path that starts in A (at k0), crosses the interface ki at least once, and finally ends by either crossing

k0 or ki + 1. In general, one can take simply a successful path from the previous ki � 1 interface ensemble that

reached ki, and complete its evolution until reaching either A or ki + 1. (For more details on initial path

generation we refer to [14].) The phase space point x0 is then defined as the first crossing point of this path
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with interface ki. It is convenient to use a discrete time index s = int(t/Dt), and let sb � intðtb0ðx0Þ=DtÞ and
sf � intðmin½tf0ðx0Þ; tfiþ1ðx0Þ�=DtÞ be the backward and forward terminal time slice indices, respectively.

Including x0, the initial path then consists of N(o) = sb + sf + 1 time slices. Choosing a probability c < 1

and a Gaussian width rw we now start following loop:

� Main loop

(1) Take a uniform random number a1 in the interval [0:1].

(2) If a1 < c perform a time-reversal move. Otherwise, perform a shooting move.

(3) If the trial path generated by either the time-reversal or shooting move is a proper path in the ki
ensemble accept the move and replace the old path by the new one, otherwise keep the old path.

Update averages and repeat from step 1.

� Time-reversal move

(1) If the current path ends at ki + 1 reject the time-reversal move and return to the main loop.
(2) If the current path starts and ends at k0, reverse the momenta and the order of time-slices. On this

reverse path, x0 is the new first crossing point with ki. Return to the main loop.

� Shooting move

(1) On the current path with length N(o) choose a random time slice s 0, with �sb 6 s 0 6 sf.
(2) Change all momenta of the particles at time-slice s by adding small randomized displacements

dp ¼ dw
ffiffiffiffi
m
p

with dw taken from a Gaussian distribution with width rw and m the mass of the

particle [14].

(3) In case of constant temperature (NVT) simulations: accept the new momenta with a probability [4]:
min 1; exp b EðxðoÞs0DtÞ � EðxðnÞs0DtÞ
� �� �h i

:

Here, E(x) is the total energy of the system at phase space point x. In case of constant energy (NVE)
simulations in which possibly also total linear or angular momentum should be conserved: rescale all

the momenta of the system according to the procedure described in [37] and accept the new rescaled

momenta.
If the new momenta are accepted continue with step 4, else reject the whole shooting move and

return to the main loop.

(4) Take a uniform random number a2 in the interval [0:1] and determine a maximum allowed path
length for the trial move by:
N ðnÞmax ¼ intðN ðoÞ=a2Þ:

(5) Integrate equations of motion backward in time by reversing the momenta at time slice s 0, until

reaching either k0, ki + 1 or exceeding the maximum path length N ðnÞmax. If the backward trajectory

did not reach k0 reject and go back the main loop. Otherwise continue with step 6.

(6) Integrate from time slice s 0 forward until reaching either k0, ki + 1 or exceeding the maximum path

length N ðnÞmax. Reject and go back to the main loop if the maximum path length is exceeded or if

the entire trial path has no crossing with interface ki. Otherwise continue with the next step.

(7) Accept the new path, reassign x0 to be the first crossing point with ki and return to the main loop.

Finally, the probability PAðkiþ1jkiÞ follows from:
PAðkiþ1jkiÞ ¼
Npð0! iþ 1Þ

NpðtotalÞ
; ð29Þ
with Np(0! i + 1) the number of sampled paths that connect k0 with ki + 1 and Np(total) the total number
sampled paths in the ensemble of interface ki.
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Time reversal moves do not require any force calculations. On the other hand, two subsequent time rever-

sals will just result in the same path. Therefore, we usually take c = 0.5 giving shooting and time reversal

move an equal probability. Similar reasoning is applied to the choice of rw. If rw is large, many trial moves

will fail to create a proper path. On the other hand, a too small value of rw will result in almost the same path.

Practice has shown that an optimal value of rw is established when approximately 40% of the paths is ac-
cepted [12]. This will usually imply that rw will be larger for the interfaces ki close to A than the ones closer

to B. The mass weighted momenta change at step 2 of the shooting algorithm is chosen such that the velocity

rescaling at step 3 maintains detailed balance [37]. In principle, NVT simulations do not require rescaling and

dp can be taken from any symmetric distribution. The integration of the equations of motion at steps 5 and 6

of the shooting move are normally performed by constant energy MD simulations without using a thermo-

stat to describe the actual dynamics as realistic as possible. The temperature only appears at the acceptance

criterion at step 3. In this algorithm we go from one phase point xðoÞ0 to a new one xðnÞ0 by means of many MD

steps. Therefore, it has a strong similarity with hybrid MC [38]. Hence, the argument that the dynamics
should be time reversible and area preserving [4] should also be applied here. For this reason, we strongly

advice to use the velocity Verlet [39] algorithm rather than higher order schemes such as Runga–Kutta.

The maximum allowed path length N ðnÞmax in step 4 is introduced to maintain detailed balance when sampling

paths of different length and to avoid having to reject very long trial paths afterward [15].

PPTIS algorithm. The four one-interface probabilities p�i ; p¼i ; p	i ; and pzi for a single interface ki can be cal-

culated simultaneously [16] with paths that start at ki � 1 or ki + 1 and end by crossing either ki � 1 or ki + 1. All

paths should have at least one crossing with ki. Hence, sb � intðmin½tbi�1ðx0Þ; tbiþ1ðx0Þ�=DtÞ and sf �
intðmin½tfi�1ðx0Þ; tfiþ1ðx0Þ�=DtÞ. The path sampling is then identical to the TIS algorithm except that ki � 1 is used
instead of k0, time reversal moves are always accepted and the backward integrating at step 5 is not rejected

when reaching ki + 1 as pathsmay start fromboth sides. The one-interface crossing probabilities are then given

by:
p�i ¼
Npði� 1! iþ 1Þ

Npði� 1! iþ 1Þ þ Npði� 1! i� 1Þ ;

p	i ¼
Npðiþ 1! i� 1Þ

Npðiþ 1! i� 1Þ þ Npðiþ 1! iþ 1Þ ;

p¼i ¼ 1� p�i ; pzi ¼ 1� p	i :

ð30Þ
3.4. Defining the interfaces

The order parameter k in TPS and TIS does not have to correspond to a reaction coordinate that captures

the essence of the reactionmechanism.The only requirement is that k candistinguish between the twobasins of
attraction. In TIS this occurs via the two outer interfaces k0 and kn that define stateA andB. The definitions of

A andB are more strict than in TPS [15]. The boundaries k0 and kn should be defined such that each trajectory

between the stable states is a rare event for the reaction we are interested in. In addition, the probability that

after this event the reverse reaction occurs shortly thereafter must be as unlikely as an entirely new event. In

other words, a trajectory that starts in A and ends in B is allowed to leave region B shortly thereafter, but the

chance that it re-enters region A in a short time must be highly unlikely. Sometimes it is not sufficient for a
proper definition of the boundaries k0 and kn to only use configuration space. In the dimer study of [15], an

additional kinetic energy constraint was introduced to ensure the stability of state A and B.

The intermediate interfaces can be chosen freely and should be placed to optimize the efficiency. This is,

of course, system dependent, but reasonable estimates can be made a priori. Let us write down the total

computation time as CPU �
PNW

i¼1NiLi with NW the number of windows (interface ensembles), Ni the num-
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ber of paths in the ensemble of interface i required to obtain a desired precision �i, and Li the average path

length. Here, we neglect the influence of rejections and the fact that two successive pathways in the MC

sequence are not completely uncorrelated. We chose the interface separations and the number of paths such

that Pðkiþ1jkiÞ ¼ p and Ni = np, resulting in �i = � for all i. The total error �tot, that we fix, is related by

�2tot ¼ NW�
2 with �2 � (1�p)/(p np). Hence, np � NW(1 � p)/p yielding CPU �

PNW

i¼1LiNWð1� pÞ=p. The
number of windows follows from pNW ¼ Pðknjk0Þ ) NW � �1= lnðpÞ. Except for diffusive barrier

crossings [16], that are most conveniently treated by PPTIS, the average path length Li has a linear depen-

dence �i(kn � k0)/NW [15]. Taking this all into account, the final result gives CPU � ln(p)�2(1 � p)/p that

has a minimum for p = 0.2. Although, we made several assumptions in this derivation, we believe that in

general Pðkiþ1jkiÞ 
 0:2 for all i is close to an optimum efficiency.

Between the interface positions one can use of a finer grid of sub-interfaces to obtain the crossing prob-

ability function PAðk j k1Þ [15] which is the path space analog of a Landau free energy profile F(k). For
PPTIS different requirements exist for the position of interfaces. As the PPTIS formalism is based on a
complete memory loss over distances larger than the interface separations, the PPTIS interfaces should

be set sufficiently far apart. The calculation of memory loss functions can help to determine the minimum

required distance to establish this [16].

We would like to stress that although PPTIS transforms the system into a (pseudo) Markovian hopping

sequence based on local transition probabilities, it still maintains considerable history dependence. For

example, the chance to go from interface i to interface i + 1 is assumed to be equal for the path that arrived

at i via the sequence i � 2! i � 1! i or via the sequence i! i � 1! i. However, this transition to i + 1

from i can still be different when its history had hopping sequence i + 1! i.
4. Improving the sampling

4.1. Parallel path swapping

Biased sampling methods such as constrained dynamics [19], multicanonical [40] or umbrella sampling

[17,18] can suffer from substantial ergodicity problems when the order parameters are not equal to the reac-
tion coordinate. This lack of ergodicity usually shows up in hysteresis in the free energy curves (see e.g.

[30,41]), and gives, besides a low transmission coefficient, rise to an additional error in the rate constant

estimate.

Transition path sampling was precisely devised to avoid this problem with reaction coordinates, and, in

a way, also avoids ergodicity problems due to the non-local nature of the shooting move. This advantage

showed up in the water trimer study [37] where the TPS algorithm was capable of finding two reaction

mechanisms across different saddle points separated by a barrier higher than the total energy of the

NVE simulation. We stress that this would have been much more difficult to achieve or even impossible
in an umbrella sampling algorithm with several narrow windows. However, path sampling can also suffer

from ergodicity problems if large barriers separate multiple reaction channels in a high-dimensional rough

energy landscape. In particular in the case of PPTIS, the short paths are much less likely to overcome such

barriers.

Parallel tempering techniques (also known as replica exchange methods) can facilitate the sampling [42],

but require a rather large computational effort and cannot be applied at constant energy. Here, we propose

a less expensive parallel method especially tailored for PPTIS to enhance ergodicity. This parallel path

swapping (PPS) technique is based on the exchange of paths between two subsequent interface ensembles.
Fig. 3 shows one path in the ki ensemble, consisting of all possible paths crossing ki while starting and end-

ing at either ki � 1 or ki + 1, and one in the ki + 1 ensemble consisting of all paths crossing ki + 1 at least once,

while starting and ending at either ki or ki + 2. We introduce a new MC move that attempts swapping the
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Fig. 3. Path swapping move for PPTIS. The last half of the path in the ki ensemble and the first half of the path in the ki + 1 are

swapped to the ki + 1 and ki ensembles, respectively.
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current path of the ki ensemble with that of the ki + 1 ensemble, as depicted in Fig. 3. The swap move will be

rejected if the ki ensemble path does not end at ki + 1 or if the ki + 1 ensemble path does not start at ki. Other-

wise, the move is accepted and the two trajectories are swapped from one ensemble to the other. Integrating

the equations of motion backward (for the ki ensemble) and forward (for the ki + 1 ensemble) will result in

two entirely new paths for both ensembles. The acceptance/rejection criterion appears before any expensive

computation of MD trajectories. Moreover, once accepted we obtain a new path for both ensembles for

price of effectively only one path. This makes the path swapping move useful even if for systems not suffer-

ing from ergodicity problems.
Another advantage of PPS is that it allows to go beyond the pseudo-Markovian description of PPTIS.

Fig. 3 shows that the paths at the right-hand side, if we include the dashed trajectory part, can connect four

interfaces instead of only three. This extension allows for a long range verification of the memory loss

assumption. Also, the development of new, smart algorithms based on PPS might be able to correct for

memory effects or to search for ideal interface positions on the fly.

While PPS is very effective when the confinement of short paths in PPTIS can cause sampling problems,

even TIS and TPS algorithms might benefit from path swapping when multiple reaction channels exist.

4.2. CBMC based shooting moves

Originally developed to sample polymers at high densities, the configurational bias Monte Carlo

(CBMC) technique grows chain molecules in a biased fashion in order to avoid unfavorable overlap of

the beads [43–46]. The similarity between growing polymers and generating dynamical trajectories was

the inspiration for the development of TPS and has been exploited in the sampling of the stochastic path

action [10,47]. However, this CBMC-like technique was found to be less effective than the shooting algo-

rithm [14]. Here, we propose a combination of the shooting move with CBMC for diffusive systems that
suffer from low acceptance due to a non-flat rough free energy barrier. When shooting from one basin

of attraction in such systems, the Lyapunov instability causes the paths to diverge and return to the same

basin of attraction before crossing the barrier. The use of some stochastic noise allows shooting in only one

time direction and alleviates this problem slightly [48,31], but at the price that independent pathways are

generated only after a number of accepted shooting moves from the barrier region. This slow exploration

of path space is even worse for processes proceeding via multiple dynamical bottlenecks, for instance

reactions taking place though a short lived intermediate state.

Within the shooting algorithm, CBMC can be applied both at the shooting point (the random time slice
for which we change the momenta) and along the path by introducing some stochastic noise. At the shoot-

ing point s 0 we generate a set of Ns momenta displacements {dp(n)}, and accept these displacements using

step 3 in Section 3.3. Each phase point is then integrated forward and backward for a time sL, resulting in
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Ns trajectory segments sj � fxðjÞðs0�sLÞDt; . . . ; x
ðjÞ
ðs0þsLÞDtg for j ¼ 1; . . . ;Ns (see Fig. 4(a)). The time interval sL

should be large enough to decide whether a trajectory has a chance of being successful, but much smaller

than the average path length of a complete trajectory. All path segments are given a weight wj
Fig. 4.

examp

trial se

conseq

At eac

dashed
wðnÞj ¼ W dpðnÞ
� �

FðsjÞ; ð31Þ
whereW equals 1 (else 0) for accepted momenta changes dp at the shooting point s 0. The biasing functionF
should be chosen to give the highest weight wj to those segments that are most likely to produce a complete

path of the corresponding interface ensemble. One possibility is to choose F ¼ expðaDkÞ with

Dk ¼ kðxðs0þsLÞDtÞ � kðxðs0�sLÞDtÞ and a a parameter optimized to the steepness of the barrier at xs0Dt. In that

case, F is a function only of the backward and forward end points of the path segments sj. The Rosenbluth

factor for the set of trajectory segments is:
W ðnÞ �
XNs

j¼1
wðnÞj : ð32Þ
One of the segments si is selected with a probability wi/W
(n). To correct for this bias and to obey detailed

balance, we also have to calculate the Rosenbluth factorW(o) for the old path. The procedure is the same as

above, but now we apply Ns � 1 new random momenta changes {dp(o)} to the momenta of si at the same

shooting point and again generate a set of segments of length 2sLDt. This set is completed by adding

segment s0 of the same length from the old path. The Rosenbluth factor for the old path equals
W ðoÞ �
XNs�1

j¼0
wðoÞj ; ð33Þ
where wðoÞ0 is the weight of segment s0 , and wðoÞj with j = 1, . . . ,Ns � 1 are the weights for the segments that

follow from {dp(o)}.
By imposing super detailed balance [4] the acceptance probability of segment i becomes:
P accðs0 ! siÞ ¼ min 1;
wðoÞ0 W ðnÞqðxðnÞs0DtÞ
wðnÞi W ðoÞqðxðoÞs0DtÞ

" #
: ð34Þ
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CBMC shooting move. (a) At the shooting point at the old trajectory (dashed line) four trial segments are released. In this

le the momenta of segment 1 and 2 have been rejected and are not integrated further. Segment 0 is retracing the old path. Of the

gments, segment 3 has come farthest in its forward (solid arrow) and backward (open arrow) time evolution and will

uently have the highest weight. (b) The use of stochasticity allows the creation of trajectory jets at several points along the path.

h junction the path will follow the most favorable direction (bold solid line). The creation of trajectory jets at the old path (bold

line) is required to maintain super-detailed balance.
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Here, the weight functions wi and the distributions q are still present, because they do not cancel as in the

standard CBMC expression. The accepted segment is integrated to the complete path just as in the normal

shooting move of Section 3.3. Of course, this procedure is computationally more expensive than the

standard shooting move. However, the biasing function F allows to choose a segment with much higher

probability to become an accepted path. We expect an increase in sampling efficiency when the gain in
acceptance outweighs the cost of the construction of the trajectory segment sets.

In the above algorithm, we only can bias the growth of the first segment of the trajectory (the analog of

the polymer in standard CBMC) because the rest of the trajectory follows deterministically once the first

segment has been chosen. In the standard polymer CBMC a bias is introduced at each segment, and we

can make use of the full power of CBMC if we consider stochastic trajectories. Introducing a small amount

of stochasticity by for instance the Andersen thermostat [48] or by making use of the periodic boundary

condition [49] will hardly change the dynamical properties of the transition process.

Stochasticity allows us to create trajectory jets at several points along the paths (see Fig. 4(b)). The first
segment is created as in the deterministic procedure above. However, the chosen segment is not integrated

to the full path length. Instead, we start with the end point of the forward trajectory and integrate a �jet� of
forward trajectory segments each evolving differently according to its own random noise. Each segment j of

this �jet� k has a weight wjk similar to Eq. (31) and each jet will have a total weight W k ¼
P

jwjk. We select a

segment i according to its relative weight wik/Wk, and continue with the next jet of forward segments. The

same is done for the backward paths, until the path is completed. After generating the new path, we have to

repeat the �jet� procedure for the old path as depicted in Fig. 4 in order to calculate the Rosenbluth factor of

the old path. The total Rosenbluth factors are now
W ðnÞ
RF ¼

Y
k

W ðnÞ
k ; W ðoÞ

RF ¼
Y
k

W ðoÞ
k ; ð35Þ
where k runs over all the jets including the one at the shooting point xs0Dt. The final acceptance criterion

obeying super detailed balance is then Q2 3

P accðo! nÞ ¼ min 1;

W ðnÞ
RFqðx

ðnÞ
s0DtÞ

k
wðoÞ0k

W ðoÞ
RFqðx

ðoÞ
s0DtÞ

Q
k
wðnÞik

64 75; ð36Þ
where wðoÞ0k is the segment weight at jet k on the old path and wðnÞik is the weight of the selected segment

of jet k on the new path. To take into account the change in path-length one should include a factor

min[1,N(o)/N(n)], but this is usually implemented by defining a maximum path length as explained at step
4 of the shooting algorithm in Section 3.3. The above algorithm could be useful when the standard shooting

move suffers from extreme low acceptance ratios. The success of this method, however, will probably de-

pend strongly on the kind of penalty functions used in the algorithm. If the bias is too strong, it might drive

the system along k without exploring the phase space orthogonal to it. The method is then doomed to fail

whenever k is not close to a proper reaction coordinate. We plan to investigate this effect in the near future.

4.3. Time as transition parameter

In TIS the choice of the order parameter is not critical as k does not have to correspond to the reaction

coordinate. Yet, it is possible that the order parameter k can bias the outcome of transition mechanism and

rate constants, although much less than for the TST reactive flux method, for instance, when the reaction

mechanism leads in a direction that k does not allow. In principle, an order parameter-free sampling meth-
od is, therefore, highly desirable when examining unexpected contra-intuitive reaction mechanisms. One

possibility for such a bias-free method is by using the time on the path outside A as transition parameter

(we use �transition� instead of �order� to indicate that it is not a traditional order parameter as it is not based

on a phase point).
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Fig. 5. Time as transition parameter. The square denotes the definition of the boundary for state A. The thin lines are free energy

contour lines. The four panels show the representation of generated trajectories in successive time-interface ensembles. At panel (1),

PAðTiþ1jTiÞ is the fraction of of trajectories that stay outside A longer than Tiþ1 (open arrows). All trajectories have at least a length

Ti. The solid arrows are the paths that return to A beforeTiþ1. At panel (2),PAðTiþ2jTiþ1Þ is calculated for paths that remain outside

A longer than Tiþ1. The minimum length of the paths is further increased at panel (3). Incidentally, a path will end up in the yet

unknown state B. At panel (4) the minimum path length constraint forces all the paths into the metastable state region B. From here,

they will not return. Hence, PAðTj0Þ will show a plateau.
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For a particular stable state A definition k0, PAðTiþ1jTiÞ is the probability that a path, starting from k0
and remaining outside A over a time Ti, remains even longer outside A until at least Tiþ1 > Ti. To cal-

culate the probability PAðTiþ1jTiÞ by a bias-free TIS simulation we generate an ensemble of trajectories

that have path lengths between Ti and Tiþ1 using the shooting algorithm of Section 3.3. At the shooting

point, we integrate backward until reaching k0 or until the length of the trial trajectory exceeds Tiþ1 (or
N ðnÞmaxDt as defined at step 4 of the shooting algorithm). If the backward trajectory exceeds either Tiþ1 or

N ðnÞmaxDt the shooting move is rejected. The forward trajectory is continued until reaching k0, or until a path

length of Tiþ1; or N ðnÞmaxDt. The trial path is rejected if N ðnÞmaxDt is exceeded or if the trajectory ends at k0 in a

time shorter than Ti. In the subsequent ensemble, the probability PAðTiþ2jTiþ1Þ for Tiþ2 > Tiþ1 is

calculated for all paths with at least a length Tiþ1.

This method, as illustrated in Fig. 5, will thus explore automatically the regions further and further out-

side A. At some moment it will find the closest stable state region (state B). Trajectories reaching this region

will not go back to A, hence, the overall crossing probability function PAðTj0Þ will show a plateau at some
time T similar to standard TIS.

Two-ended path sampling methods, such as TIS, PPTIS and TPS can only treat processes in which both

stable states A and B are known. They cannot find the final state starting from a single stable state, a fact al-

ready discussed by Dellago and Chandler [50]. The algorithm described here might be a solution to this

problem.
5. Extracting information from path ensembles

5.1. Reaction mechanism

The ensemble of paths collected by the TIS algorithm can be used to investigate the reaction mech-

anism. We believe that for this purpose the TIS path ensembles might even be more useful than the
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TPS path ensembles. The TPS method, first samples paths that all successfully reach B in the part to

obtain the reactive flux function and then in the second step samples artificially short trajectories of

fixed length to calculate the time correlation function C(t). Because of this constraint, the resulting

ensembles do not give useful information about the reaction. The TIS ki-ensembles, on the other hand,

contain the correct distribution of paths that have crossed ki and are either going on to ki + 1 or return
to A. Some hidden order parameters can only be discovered by carefully comparing configurations

along reactive and unreactive trajectories that are similar in terms of order parameters which at first

sight were considered as being the (only) important ones. For instance, the comparison of reactive

and unreactive geometries with an almost identical orientation of the reactants showed that precise tet-

rahedral ordering of the solvent water molecules was an important factor in the hydration reaction of

ketones [30]. Although, there is currently no systematic way to extract the reaction coordinates from a

path ensemble, once a reaction coordinate is postulated based on physical insight it can be tested using

committor distributions [13].
5.2. Activation energies

The activation energy Ea is an important experimentally accessible quantity and is defined by the Arrhe-

nius law
k ¼ Ae�bEa ; ð37Þ

where A is a system dependent prefactor. In fact, A and Ea may also be temperature dependent. Such

non-Arrhenius behavior can be quite severe: sometimes reaction rates are even decreasing with increasing

temperature, resulting in a �negative activation energy� (see e.g. [51]). From Eq. (37) it follows that
Ea ¼ �
o ln kABðbÞ

ob
: ð38Þ
An algorithm to calculate Ea in a TPS simulation was given in [52]. Here, we use a similar approach to

calculate Ea in a canonical TIS simulation. Substitution of Eq. (25) in Eq. (38) results in
Ea ¼ �
o

ob
ln /1;0

� �
� ln hAh i þ

Xn�1
i¼1

ln Uiþ1;0
i;0

D E
� ln /i;0

� �� �" #
: ð39Þ
For any function A(x) we can write
� o lnhAðxÞi
ob

¼ hEðxÞiA � hEðxÞi; ð40Þ
with ÆE(x)æA = ÆA(x)E(x)æ/ÆA(x)æ. Using
hEðxÞiUiþ1;0
i;0
¼ hEðxÞi/iþ1;0

; ð41Þ
most terms in Eq. (39) cancel, only leaving
Ea ¼ hEðxÞiUn;0
n�1;0
� hEðxÞihA ; ð42Þ
which is the difference between the average energy of state A and the energy of the transition pathways
connecting A with B. Consequently, the calculation of the Ea does not require all interface ensembles,

but only the last ensemble kn � 1. However, if all the path ensembles i = 1,. . .,n � 1 are available an activa-

tion energy function,
EaðkiÞ ¼ hEðxÞiUi;0
i�1;0
� hEðxÞihA ; ð43Þ
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can be calculated that should converge to a plateau analogous to the crossing probability Pðkjk1Þ. A finer

grid of sub-interfaces can be applied to obtain a continuous smooth function Ea(k).
Again, there is a subtle difference between the TPS and TIS algorithms. For the reaction rate determi-

nation, TPS requires a plateau in the time correlation function of Eq. (8), while TIS should give a plateau in

k for the crossing probability Pðkjk1Þ. Similarly, the TPS activation energy is expressed as a time dependent
function that will converge to a plateau at times t ¼T [52], while the TIS activation energy reaches a pla-

teau in terms of k.
Not all reactions show Arrhenius behavior. Therefore, it would be interesting to determine kAB(b) for a

range of temperatures. One can estimate the rate for a slightly different temperature by reweighting the

crossing probabilities [17,18]. If ÆA(x)æ is the average of an observable A(x) at inverse temperature b, then
ÆA(x)e�DbE(x)æ/ Æe�DbE(x)æ should be the average at inverse temperature b + Db. This reweighting technique

can also be applied to the crossing probabilities (21) and the flux (28). Of course, Db should be small to

obtain good enough statistics. The calculation of the temperature dependence of individual crossing prob-
abilities has the advantage that the origin of possible non-Arrhenius behavior might be located (in terms of

k) along the reaction path.
6. Summary and conclusions

We reviewed the basic concepts of TIS and PPTIS and explained their relation to TST based methods

and TPS. We believe that path sampling methods, TPS, TIS and PPTIS, are powerful when dealing with
high-dimensional complex process for which a reaction coordinate is lacking. Among these methods,

TIS can be considered as an improvement upon the original TPS giving a complete non-Markovian descrip-

tion of the reactive event, but more efficient. PPTIS improves the efficiency even more, but relies on the

assumption of memory loss between interfaces. Hence, it should only be applied for diffusive barrier cross-

ings. In addition to this review, we have introduced several new techniques in this paper. These novel meth-

ods comprise the CBMC based shooting moves, order parameter free methods, parallel path swapping and

the calculation of activation energies. The efficiency of these methods should be tested by future simula-

tions. We plan study this in the near future.
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Appendix A. The flux revisited

In some cases, we can improve the efficiency of the flux calculation by separating the flux into the prob-

ability to be on the k1 surface times a factor integrating over all possible velocities when leaving the surface.

The flux term can then be calculated by combining straightforward MD with, as soon as we cross the k1
surface, the sampling of sets of randomized Gaussian distributed velocities _k, after which the MD trajectory

is continued with the old original momenta. In this way, we make optimal use of the statistics of the
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crossing points. The velocity sampling does not require force calculations and is therefore cheap. In the fol-

lowing, we assume that we always take k1 = k0. Similar to Eq. (2) we can write:
h/1;0i
hhAi

¼ hhð _kÞ _kik1P ðk1Þx2A; ðA:1Þ
with
P ðk1Þx2A �
hdðkðxÞ � k1Þi
hhAi

: ðA:2Þ
The two terms
h/1;0i
hhAi and P ðk1Þx2A can be obtained in the same MD simulation. As Æd(k(x) � k1)æ dk is equal

to the probability to find the system in the interval ½k1 � 1
2
dk : k1 þ 1

2
dk�, it can be measured by defining a

width dk and performing a MD (or MC) simulation starting in A:
P ðk1Þx2A ¼
1

dk
N k1

NMD

; ðA:3Þ
with N k1 the number of counts in the specified interval and NMD the number of MD steps. However, this

number can depend sensitively on the choice of bin width dk. Ideally one would like dk to be as small as
possible, at the cost of having to perform a very long simulation run for a statistically accurate number N k1 .

A better option is to weigh the crossings with a function depending on the velocity. Assume that we cross k1
in one MD step from xiDt to x(i + 1)Dt. If dk is small neither of these points will lie inside the interval. How-

ever, assuming a linear dynamics between these points, the system traverses from xiDt to x(i + 1)Dt in Nsub

equidistant sub steps. The number of phase points N k1 that lie in the dk interval of this short linear trajec-

tory is approximately dkNsub/|k(x(i + 1)Dt) � k(xiDt)|. The total number of MD moves NMD, of course, also

increases by a factor Nsub. So Eq. (A.3) becomes
P ðk1Þx2A ¼
1

NMD

X
i

� 1

jkðxðiþ1ÞDtÞ � kðxiDtÞj
; ðA:4Þ
where the * indicates that the summation has to be performed only for points i along the trajectory for

which xiDt! x(i + 1)Dt showed a crossing (positive or negative) with interface k1. Further optimization

can be achieved by writing jkðxðiþ1ÞDtÞ � kðxiDtÞj ¼ j _kxiDt jDt þ OðDt2Þ ¼ j _kxðiþ1ÞDt jDt þ OðDt2Þ, but the velocity
_k at the interface would give the most exact result. If we also assume a linear change in time for the veloc-

ities between i and i + 1, our best estimate for P ðk1Þx2A is:
P ðk1Þx2A ¼
1

NMDDt

X
i

� 1

j _kðxiDt; k1Þj
; ðA:5Þ
where we have introduced the notation g(xiDt;kj) to denote the function g(x) at the crossing point of inter-

face kj obtained by a linear interpolation of the function between two successive trajectory points
xiDt! x(i + 1)Dt:
gðxiDt; kjÞ �
1

kðxðiþ1ÞDtÞ � kðxiDtÞ
½kðxðiþ1ÞDtÞ � kj�gðxiDtÞ þ ½kj � kðxiDtÞ�gðxðiþ1ÞDtÞ

	 

: ðA:6Þ
The factor hhð _kÞ _kik1 in Eq. (A.1) can be calculated in the same MD simulation with an additional sampling

procedure. In some simple cases, there is even an analytically expression. For instance, in case the x-coor-
dinate of particle j is the order parameter, k(x) = rjx in a constant temperature (NVT) simulation, we would

obtain hhð _kÞ _kik1 ¼
1ffiffiffiffiffiffiffiffiffi
2pbmj

p with mj the mass of this particle. However, for more complex k(x), such as the
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distance between two particles i and j, k(x) = jri � rjj, no simple analytic expression exists. The calculation

of hhð _kÞ _kik1 can then be calculated by sampling a random set of NMC velocities _k as soon as a crossing is

detected: h i

hð _kÞ _k

D E
k1
¼

P�
i

1

j _kðxiDt ;k1Þj

PNMC

j hð _~kÞ _~k

NMC

P�
i

1

j _kðxiDt ;k1Þj

h i ; ðA:7Þ
where i runs over all MD crossings with interface k1, _kðxiDt; k1Þ is the MD crossing velocity through k1, j
runs over the NMC �artificial� velocities _~k that are taken from a proper distribution P ð _~kjxiDtÞ. For NVT sim-

ulations without additional constraints this distribution P ð _~kjxiDtÞ does not depend on the phase point xiDt
and we can simply sample

_~kðfpgÞ where the momenta {p} defining _k are taken from a Gaussian distribution

For NVE simulations, the distribution P ð _~kjxiDtÞ does depend xiDt and we have to change all momenta and

distribute them on the hypersphere defined by the kinetic energy K = E � V(xiDt;k1) with E the total energy

and V(xiDt;k1) the total potential energy at the crossing point. The proper sampling of momenta distribu-

tions in the presence of linear constraints, such as linear and angular momentum, is explained in [37].
Clearly, if P ð _~kjxiDtÞ ¼ dð _~k� _kðxiDt; k1ÞÞ, Eq. (A.7) would be equal to Nþc =

P�
i j _kðxiDt; k1Þj

�1
leaving Eq.

(A.1) identical to Eq. (28) from which we started.
Appendix B. TIS shooting acceptance criterion for stochastic dynamics

Although, we assume throughout the paper that the equations of motion were deterministic, it is some-

times useful to implement some stochasticity into the dynamics, or consider completely stochastic equation
of motion such as Brownian Dynamics [14,48,31]. Quantities like hAðx0Þ are, then, no longer just 1 or 0, but

turn into probabilities with a fractional value. Moreover, for stochastic dynamics it is not trivial whether we

are allowed to use the path that generated xðoÞ0 as our instrument to search for the new phase point xðnÞ0 . In

this appendix, we derive the acceptance probability for the shooting algorithm for arbitrary dynamics along

the same lines as in [14]. At start, we try to be as general as possible making the least possible assumptions

on the type of dynamics or on whether the system is in equilibrium or not. For this purpose, it is most con-

venient to use the path space description, instead of phase space. The weight or probability density P½x� for
a single path x � fx�sbDt; . . . ; x0; . . . ; xþsfDtg is then not only determined by the distribution q(x0) of x0, but
also by the probabilities of arriving along this precise route from x�sbDt in the past and continuing upto

xþsfDt in the future:
P½x� ¼ qðx0Þ
Y�sb
i¼�1

pðxðiþ1ÞDt  xiDtÞ
Ysf
i¼1

pðxði�1ÞDt ! xiDtÞ: ðB:1Þ
Here, p(x! y) is the forward transition probability (more accurate: probability density) to go from x to y

and p(y x) is the probability that, if the system is at y, it came from x in the past. Here, q(x0) is not nec-
essarily the Boltzmann distribution or even a distribution in equilibrium. It is applicable to all systems that

(at least to some approximation) are described by a steady state. We can express p(y x) in terms of

forward transition probabilities as
pðy  xÞ ¼ qðxÞpðx! yÞ
ntdx0qðx0Þpðx0 ! yÞ ¼

qðxÞpðx! yÞ
qðyÞ ; ðB:2Þ
where �dx 0q(x 0)p(x 0 ! y) = q(y) results from the steady state behavior. Using this relation, one can show

that Eq. (B.1) is exactly equal to the probability of the first point qðx�sbDtÞ times the forward evolution

probabilities
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P½x� ¼ qðx�sbDtÞ
Ysf�1
i¼�sb

pðxiDt ! xðiþ1ÞDtÞ; ðB:3Þ
which is identical to the weight for a path in the TPS-ensemble [14] with x�sbDt instead of x0. Note that so

far, we have assumed nothing about the nature of dynamics (irreversible or reversible, stochastic or deter-

ministic). When restricted to the TIS ensemble for interface i, the probability density of a path can be writ-
ten as
Pki ½x� � ĥiðxÞP½x�=ZðkiÞ; ðB:4Þ

where ĥi is unity if the path goes from k0, crosses ki and ends either at ki + i or goes back to k0. Otherwise it is

zero. The normalizing factor Z(ki) equals
ZðkiÞ �
Z

Dx ĥiðxÞP½x�; ðB:5Þ
where the integral is taken over all possible paths x of all lengths, starting in all possible initial conditions

x�sb . Note that, contrary to TPS, Eqs. (B.3) and (B.4) are not directly related to the relative probabilities of

all paths in the TIS ensemble. This is a result of the path ensemble containing paths of different lengths. Eq.
(B.3) turns into a true probability only when multiplied with the infinitesimal volume element in path space

Dx �
Qsf

i¼�sbdxiDt � dxN . Hence, a long path has an infinitely smaller probability than a shorter one for sto-

chastic dynamics. Therefore, the concept of path space may sound peculiar for TIS. Still, it is instrumental

to derive proper acceptance rules for TIS obeying detailed balance.

When performing the random walk in the TIS path space using the shooting algorithm, the detailed bal-

ance condition is
P gen½xðoÞ ! xðnÞ�
P gen½xðnÞ ! xðoÞ�

P acc½xðoÞ ! xðnÞ�
P acc½xðnÞ ! xðoÞ� ¼

Pki ½xðnÞ�
Pki ½xðoÞ�

; ðB:6Þ
where o and n denote the old and new path, respectively. The usual Metropolis acceptance rule is then
P acc½xðoÞ ! xðnÞ� ¼ ĥiðxðnÞÞmin 1;
P½xðnÞ�
P½xðoÞ�

P gen½xðnÞ ! xðoÞ�
P gen½xðoÞ ! xðnÞ�

� �
: ðB:7Þ
Note that this rule only applies at the trajectory space level, it has nothing to do with whether the under-
lying dynamics is stochastic or deterministic, or even reversible or irreversible.

The generation probability to create a new path from an old path using the shooting move is given by
P gen½xðoÞ ! xðnÞ� ¼ PðdpÞ
N ðoÞ

P f
gen½xðoÞ ! xðnÞ�P b

gen½xðoÞ ! xðnÞ�; ðB:8Þ
where 1/N(o) is the chance to choose the shooting point s 0 with �sb(o) 6 s 0 6 sf(o) at the old path, P(dp) the
chance to select the randomized momenta displacements. As dp is normally taken from a symmetric distri-
bution, hence P(dp) = P(�dp), this term will cancel in Eq. (B.7). The last two factors in Eq. (B.8) are the

probabilities to generate trajectories from the shooting point point s 0 with the new momenta. These gener-

ation probabilities are given by the underlying dynamics used to generate the trajectories. If one starts from

a shooting point at s 0 on the old existing path (with �sðoÞb < s0 < sðoÞf ) the generation probability for the

forward segment is
P f
gen½xðoÞ ! xðnÞ� ¼

YsðnÞf
�1

i¼s0
p xðnÞiDt ! xðnÞðiþ1ÞDt
� �

: ðB:9Þ
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This generation probability is exactly identical to the weight of the forward segment. The integration of the

backward segment is not always trivial especially when dealing with irreversible processes. However, in gen-

eral, when reversible dynamics is applied, the backward segment is obtained by reversing the momenta,

integrating forward in time and reversing the momenta again [14]. Accordingly, the backward segment�s
generation probability equals
P b
gen½xðoÞ ! xðnÞ� ¼

Ys0�1
i¼�sðnÞ

b

p �xðnÞðiþ1ÞDt ! �xðnÞiDt

� �
; ðB:10Þ
where �x � fr;�pg for a phase point x ” {r,p}. Using these generation probabilities and the path weight Eq.

(B.3) the factor within the min function of Eq (B.7) can be written as
P½xðnÞ�P gen½xðnÞ ! xðoÞ�
P½xðoÞ�P gen½xðoÞ ! xðnÞ� ¼

q½x�sðnÞ
b

�N ðoÞ

q½x�sðoÞ
b

�N ðnÞ
�
Ys0�1

i¼�sðnÞ
b

p½xðnÞiDt ! xðnÞðiþ1ÞDt�
p½�xðnÞðiþ1ÞDt ! �xðnÞiDt �

Ys0�1
i¼�sðoÞ

b

p½�xðoÞðiþ1ÞDt ! �xðoÞiDt �
p½xðoÞiDt ! xðoÞðiþ1ÞDt�

; ðB:11Þ
where the generation probability and the weight of the forward parts of the trajectories have canceled each

other. Eq. (B.3) simplifies tremendously for dynamics that obey the microscopic reversibility condition [14]
pðx! yÞ
pð�y ! �xÞ ¼

qðyÞ
qðxÞ : ðB:12Þ
This condition can be seen as a special case of Eq. (B.2) for time-reversible dynamics with

pðy  xÞ ¼ pð�y ! �xÞ, but is very general and valid for a broad class of dynamics applying to both equilib-
rium and non-equilibrium systems. As result, if the microscopic reversibility condition (B.12) is satisfied

and thus pð�y ! �xÞ ¼ pðy  xÞ, almost all terms in Eq. (B.11) cancel, except for the steady state distributions

q(xs 0) of the shooting points.
P acc½xðoÞ ! xðnÞ� ¼ ĥiðxðnÞÞmin 1;
qðxðnÞs0 Þ
qðxðoÞs0 Þ

N ðoÞ

N ðnÞ

" #
; ðB:13Þ
which is exactly the same as for deterministic dynamics.

This is an important result as it allows to perform the NVT acceptance/rejection rule (step 3 of Section

3.3) for the new momenta at the shooting point even if the energy along the path changes giving a different

weight to q(xs 0Dt) as to q(x0). The ratio N(o)/N(n) in Eq. (B.13) can, of course, not be known in advance at

the shooting point. However, this is effectively circumvented by defining Nmax at step 4 of the shooting algo-

rithm in Section 3.3 leaving only the qðxðnÞs0 Þ=qðx
ðoÞ
s0 Þ term for the acceptance rule (step 3).
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[32] S. Nosé, A unified formulation of the constant temperature molecular dynamics method, J. Chem. Phys. 81 (1984) 511–519.
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